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Abstract

This paper gives an introductory overview of the concept of both random walks
and electrical networks in graph theory using only undergraduate level mathematics.
Random walks are stochastic processes that describe paths consisting of series of random
steps in mathematical spaces. Electrical networks are intuitively interconnections of
electrical components such as resistors, capacitors, and inductors in a circuit, modeled
using current, voltage, and resistance; although in this paper we focus on electrical
networks in the context of random walks. This paper covers fundamental definitions,
history, rudimentary examples, and important theorems in both random walks and
electrical networks and analyze the relationship between them.

1 Introduction

Given a graph G and starting vertex v, select an adjacent vertex uniformly and randomly

among the neighbors, and move to this vertex. The sequence of random vertices selected

using this method defined over a set of states and a matrix of probabilities is called a Markov

chain, and the sequence would be considered as a random walk on the graph G. Random

walks are common in algorithm design and probabilistic analysis and also have numerous

other applications.

One important application is electrical networks or circuits that can be represented as

a graph G(V,E) or vice versa. If we treat each edge xy ∈ E(G) that connects vertices,

there is defined resistance rxy for the edge and there is a current ixy that flows through the

wire. Common circuit laws such as Kirchhoff’s Law and Ohm’s Law also applies here as

underlying properties of electrical networks in the context of random walks.

Both random walks and electrical networks have physics as the source for the prob-

lems represented using expert level mathematical abstraction that are extremely difficult

to understand and appreciate. However, with only college level mathematics, we can still
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analyze the relationship between electrical networks and random walks. This paper will

give a brief overview of each concept using basic concepts in graph theory while avoiding

graduate research level mathematics concepts and jargon.

2 Basic Definitions

These are some very basic definitions that are the building blocks for our discussions regard-

ing random walks and electrical networks that we have not yet touched upon in the MATH

4710 class. This mostly only includes terms that are fundamental to deeper definitions and

theorems, which will be addressed separately and defined later during the in-depth mathe-

matics discussion. Some of these terms (i.e. current, voltage, resistance) might be present

or can even be considered as elementary in other disciplines, but for the context of graph

theory, they are still listed here for completeness purpose.

Definition 2.1. A stochastic process is a mathematical phenomena that has a random

probability distribution statistically, although it cannot be precisely predicted. Coin flipping

and random walks are both examples of various categories of stochastic processes with

different mathematical properties [1].

Definition 2.2. A random walk, or a drunkard’s walk colloquially, is defined as a

stochastic process or a random process, which describes a path consisting of a series of

random steps in a mathematical space (such as the integer space). It is one of the first

chance process that is studied in probability theory, and has many applications [1].

Definition 2.3. The Law of Large Numbers (LLN) is a theorem in probability theory

that explains the results when the same experiment is performed many times. According

to LLN, the average of the results of many trials should be close to the expected value

and tends to approach the expected value as more trials are performed. LLN is important

because it ensures stability in the long-term results of random events after a large number

of iterations [3].

An example of LLN in practice would be the task of distinguishing between a proba-

bilistic random event and a non-random event. In the case of a rigged coin flip, flipping

the coin once will offer little to no information at all about the state of the coin. However,

flipping the coin k = 10 times will give us 99.9% certainty about the state of the coin since

the probability that a coin will land on the same side 10 times in a row is (0.5)10 and

1− (0.5)10 = 0.999. Note that for the sake of this example we assume that the rigged coin

will always land on the same side with a hundred percent certainty.
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Definition 2.4. A Markov chain, or a Markov process, is a stochastic model that

describes a series of possible events, and the probability of each event depends on the state

reached in the previous event [1].

Definition 2.5. An electrical network is an interconnection of electrical components.

Some common electrical components include resistors, capacitors, inductors, transistors,

and they are modeled using definitions such current, voltage, resistance, capacitance, or

inductance.

Here are some basic yet important terms used in electrical networks that represent how

they behave physically in the real world. Most if not all of the equations used in electrical

networks revolves around some of these terms and concepts.

Definition 2.6. The current is the rate of electrical charge flows, commonly measured

in ampere.

Definition 2.7. The voltage is the potential difference in charge between two points in

the electrical network, commonly measured in volt.

Definition 2.8. The resistance is the measure of an object’s resistance to electrical flow,

commonly measured in ohm.

3 History

The term random walk was first introduced by Karl Pearson in Nature, a journal article

published in 1905 [7]. He proposed a hypothetical problem of a man walking l yards in one

direction, before turning randomly and walking another l yards in another direction. This

process is repeated n times. He said that this problem interested him considerably, and

he asked the readers whether there already exists an integrated solution to the problem he

proposed that calculates the probability that the man is at a position distance r away from

his starting points expressed in terms of l/n [7].

However, the first person that took this concept seriously in a research context was

Russian mathematician Andrey Markov, who studied the ideas about chains of linked prob-

abilities. The original intellectual thread came all the way from the famous Swiss mathe-

matician Jacob Bernoulli. Bernoulli stated in Ars Conjectandi that if you keep flipping a

fair coin, the number of heads will approach the number of tails as the number of flips goes

to infinity [2]. This is what eventually became known as the Law of Large Numbers (LLN).

Although this concept seems intuitive, it is difficult to find a rigorous proof that explains the

precise reasoning behind this concept. Bernoulli attempted a version of a proof, followed
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by Pafnuty Chebshev, another Russian mathematician who published a broader version of

a proof, before being further refined by Markov [2].

Andrey Markov also studied Alexander Pushkin’s novel Eugene Onegin in verses and

sorted through all the patterns of how vowels and consonants are used in the poetry [4].

Eventually, he summarized and published his findings to the Imperial Academy of Sciences

in St. Petersburg in January 23, 1913 [3]. Although from a modern linguistic point of view,

he did not fully consider all the choices of poem structure such as rhyme and length, but

rather treated the text as a stream of letters, and realized that the letter probabilities are

not independent by a large margin, and depends on the adjacent letters [4]. His analysis and

findings not only altered the understanding of poems, but also developed a new technique

that extended into a new branch of probability theory [3]. This technique is now known as

the Markov chain, as explained earlier in the definition section [3].

Although Karl Pearson’s original problem was not reportedly answered or solved as far

as I know, his idea was addressed by George Pólya in 1921, a Hungarian mathematician that

proposed the famous Pólya’s theorem, that a random walker on an infinite street network

in a d-dimensional space is bound to return to the stating point when d = 2, but has a

positive probability of approaching infinity and not return to the stating point when d ≥ 3

[6]. This seemingly intuitive theorem is actually quite complicated and requires techniques

from classical electrical network theory to prove rigorously [6]. The proof will be explored

later in the paper and is an important part of random walks on infinite networks, although

at the time he called it ”street networks” instead.

Furthermore, although the origin of the idea of the connection between random walks

and electric networks are unknown, the topic has been extensively recognized and explored

by many mathematician. However, the first person to apply Rayleigh’s method of dimen-

sional analysis, a very common conceptual tool used in physics and engineering that will

be explained later, to random walks seems to be the British mathematician Crispin St.

John Alvah Nash-Williams in 1959, although the American mathematician Halsey Roy-

den had applied Rayleigh’s method of dimensional analysis to a similar and potentially

equivalent problem dealing with harmonic functions on open Riemann surfaces earlier than

Nash-Williams in 1952 [5, 8].

4 Rudimentary Random Walks

The most rudimentary example for a randoms walk is the example of a man standing at a

point x, he can either walk one block to the right, or walk one block to the left, and there

is an equal probability 1/2 of either happening. This is the most intuitive representation of

the random walk problem and is quite similar to Karl Pearson’s original question, which was
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2-dimensional with four possible directions instead of two. The problem for the example

would be to determine the probability that the man is a position 0 on the line before reaching

a distinct position y after an arbitrary number of steps. The solution for this rudimentary

problem turns out to be simple as well, and the probability p(x) is strictly based on the

distance between starting point x divided by the distance between x and y. Although this

is a very limited rudimentary example for a 1-dimensional space, which is just a straight

line [1].

5 Rudimentary Electrical Networks

The concept of random walks can be considered in the context of electrical networks. The

rudimentary problem for random walks can be transformed into an electrical network with

a voltage established across the ends, with one end being the ground. In addition, equal

resistors are connected in series such that there is a resistor between our conceptual ”points”

across the electrical network. By Ohm’s Law, the current ixy flowing point x to point y

is v(x)−v(y)
Rxy

with v(x) and v(y) being the voltage defined at each point, respectively, and

rxy as the sum of the resistance series from point x to point y. By Kirchhoff’s Law, we

know that for points along the electrical network line, v(x−1)−v(x)
R + v(x+1)−v(x)

R = 0 with R

being the magnitude of the corresponding resistance. We can solve the above equation and

cancel the R and get v(x) = v(x+1)+v(x−1)
2 . This then represents the voltage at x, which is

an equivalent equation to the probability p(x) mentioned in one-dimensional random walks

applied on the electrical network [1].

6 RandomWalks on General Electrical Networks using Markov
Chains

In order to further generalize and understand the idea of random walks on higher dimen-

sional networks, we attempt to analyze random walks on general resistor networks using

Markov chains, which we have defined earlier in the definition section.

Definition 6.1. The conductance is the ability for electrical charge to flow, it is conve-

niently defined as C = 1/R, and is measured in siemens.

If G is a connected graph, then each edge xy in G has a resistance, we name it Rxy. The

conductance for each edge would be the inverse of the resistance, which is Cxy = 1/Rxy.

With this new definition of conductance, the random walk is more formally defined as a

Markov chain with the transition matrix P given by Pxy = Cxy/Cx with Cx being the

sum of all conductance from node x to all other node ΣyCxy. The Markov chain matrix
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Figure 1: An example resistance network

generated will represent the unique probability between two points in the fixed electrical

network.

An example electrical network with marked resistance is shown in Figure 1, the repre-

sents a very standard and commonly seen simple circuits generally studied in electronics

[1]. We can use our defined definition for Markov chain to create the following matrix P:
0 0 1/2 1/2
0 0 1/3 2/3

1/4 1/4 0 1/2
1/5 2/5 2/5 0


With the graph G is being connected, the walker can randomly travel between any two

states using the above Markov chain matrix, and the probability is well-defined based on

the resistance and conductance of the electrical network. A graphical representation created

by transforming the Markov chain into a directed graph is shown in Figure 2 [1]. Although

the examples we have considered so far are simple and regular electrical circuits, the basic

concept for the Markov chain model can be adapted and applied to more complicated

electrical network.

7 Pólya’s Theorem

Another important concept in the realms of random walks is the aforementioned Pólya’s

Theorem, proposed by George Pólya in 1921. Pólya invested random walks and very struc-

tured infinite graphs as shown Figure 3 on various dimensions [1]. These graphs are also

called lattices in this context by Pólya and they are constructed by joining vertices with
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Figure 2: The Markov chain for the electrical network represented as a directed graph

integer coordinates using undirected line segment to their respective nearest neighbors, the

connecting segments represent edges in the graph [1].

As shown in the graph above, when d = 1, the lattice is just an infinite line divided

into even segments with length equals to one, when d = 1, the lattice represents an infinite

network of streets and blocks, and when d = 3, the lattice is much more complicated and

resembles a jungle gym [1].

Pólya proposed the question, if the probability of moving into any direction in the lattice

is equal to each otherwise, is it guaranteed that the walk will return to its starting point

[1]?

Definition 7.1. If the walk is guaranteed to return to its starting point, we call the walk

recurrent. If there is a positive probability that the point will never return to its starting

point, we call the walk transient [6].

Pólya was able to answer the question and proved the following theorem in his 1921

work Uber eine Aufgabe betreffend die Irrfahrt im Strassennetz, and this theorem lays the

groundwork for our understanding of random walks and its many applications [6].

Theorem 7.2 (Pólya’s Theorem). Simple random walk on a d-dimensional lattice is recur-

rent for d = 1, 2 and transient for d >= 3.

Proof. Unfortunately, the full detail of the proof is incredibly complicated and even the

simplified version proposed by modern researchers requires at least 1000 words to fully

explain the idea, with the original proof proposed by Pólya being even longer, sitting at
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Figure 3: 1-dimensional lattice, 2-dimensional lattice, and 3-dimensional lattice

12 pages long and is written in German. Hence we will briefly run through the idea of the

proof, which is done using Rayleigh’s method as a tool [1, 6].

For d = 1, it is very easy to prove because a simple random walk is recurrent will mean

that the network has infinite resistance, and vice versa. This is obvious because an infinite

line of unit resistors with 1-ohm resistance obviously has infinite resistance cumulatively

[1].

For higher dimensions, we also need to decide if the d-dimensional lattice has infinite

resistance, and we use Rayleigh’s method as a tool to arrive at such decision [1].

Law 7.3 (Monotonicity Law). The effective resistance between two specified nodes is

monotonic in the branch resistances [1].

This law is generally broken down into two smaller procedures that are used a shortcut

for proving many theorems including Pólya’s Theorem.

Law 7.4 (Shorting Law). Shorting certain sets of nodes can only reduce the effective

resistance between the two nodes in the electrical network [1].

Law 7.5 (Cutting Law). Cutting certain branches can only increase the effective resistance

between the two nodes in the electrical network [1].

First, Rayleigh’s idea was to use the Shorting Law and the Cutting Law to get lower

and upper bound for the resistance. With the Shorting Law, we can short nodes that forms

squares in the 2-dimensional lattice using Rayleigh’s Shorting Law. We soon realize that the
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resistance of the network will lead to infinity because the modified network after shorting

leads to infinity. This means that when d = 2, the walk is recurrent [1].

For d = 3, we delete branches of network using Rayleigh’s Cutting Law such that the

residual network has finite resistance. This is slightly more difficult to do, we had to try to

find embedding trees before eventually arriving at the conclusion that the escape probability

is positive and the walk is transient [1].

There are many more ways to prove Pólya’s Theorem as it turns out, although most

other proofs required complex mathematical concepts to prove [1].

8 Sub Areas

There really is not any noteworthy subarea for the concept of random walks and electrical

networks as they are the building blocks for many other scientific fields. However, there

are a lot of specific applications using random walks in many different fields of study. In

biology, genetic drift in the population of a specie is based on the concept of random walks.

In physics, the Brownian motion exhibited by the random movement of molecules in liquids

and gases are also modeled by random walks. Moreover, random walks can also be used to

model how a person makes decision based on the available options in general psychology.

9 Summary

Overall, both random walks and their applications within the context of electrical networks

are concepts observed and derived from real world behaviors of physical phenomenon, and

are represented partially using some relevant graph theory concepts that we have learned

in the MATH 4710 course such as walks, paths, directed graphs, and network flows, as dis-

cussed in the paper. However, it does seem like both randoms walks and electrical networks

involve techniques and understandings from other branches of mathematics and physics

such as probability theory and complex electrical laws applied over the linear resistant net-

works such as Kirchhoff’s Law and Ohm’s Law, both of which are very common techniques

seen in electrical engineering, although extremely uncommon in graph theory.

Nevertheless, the concept of random walks have a large number of applications in many

areas of the scientific and engineering field as it explains the observed behaviors of many

stochastic processes as a fundamental model. Thanks to the basic building block of graph

theory constructs and its principal properties and theories, we are able to represent and

define this conceptually important idea sufficiently using only undergraduate level mathe-

matics.
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